Najdi forum

Intervalni trening(za Stašo)

Spregledal sem tvojo prošnjo, da napišem nekaj o tem zakaj je intervalni trening zahteven za planiranje in za izvajanje.
V par besed bi rekel to: navadni smtrnik ima premalo podatkov o sebi in znanja o načinih treniranja, da bi vedel določiti čas trajanja obremenitve, nivo obremenitve in čas počitka med intervali, da bi dosegel željeni rezultat.

Kopiram ti del razlage o tej problematiki:

Interval training is a well-known method for improving fitness. Technically, it is defined as high-intensity intermittent exercise. In an interval session, high-intensity periods of work are interspersed with rest intervals. In this way athletes can cover more distance at a high intensity than they could if they worked continuously. Because interval training is intense, it is a great method for improving both aerobic and anaerobic fitness.

Interval-training sessions can be different in composition, as there are three variables that can be altered: the intensity (speed), the work period and the rest period. For example, a running interval session could comprise 200 metre efforts in 25 secs with 60 secs recovery. Another session could be 200m in 35 secs with 20 secs recovery. In the first session, the athlete runs fast with a moderately long recovery, whereas in the second session the athlete runs only moderately fast but has a shorter recovery. Each session would end with the athlete being unable to continue at the desired pace. As many readers will know, one session may be faster than the other but by the end of the workout both sessions will feel pretty tough.

However, without accurate analysis of the aerobic and anaerobic energy demands of each session, it is impossible to say which session is the more effective, or whether the sessions place the same demands on the energy systems. With this is mind, Izumi Tabata and his colleagues at the Japanese Institute of Fitness and Sport designed an experiment to measure how two different types of interval training sessions taxed the aerobic and anaerobic energy systems (‘Metabolic Profile of High-Intensity Intermittent Exercises’, Tabata, I, Irishawa, K, Kuzaki, M, Nishimura, K, Ogita, F, & Miyachi, M, Medicine & Science in Sports & Exercise, 29(3), 390-395, 1997).
Tabata et al obtained the aerobic energy demands directly, by measuring the amount of oxygen used during exercise in millilitres of oxygen used per kilogram of body weight per minute. This score can be presented as a percentage of the VO2max of the subject, which is the maximum amount of oxygen per kg per min the subject can use. Unfortunately, the anaerobic demands cannot be measured directly in the same way. This is because ATP produced anaerobically is fuelled from the breakdown of phosphates and glycogen stored in the muscles and so it is impossible to measure directly exactly how much energy has been released. However, some researchers have argued that it is possible to estimate accurately the anaerobic demands from the ‘accumulated oxygen deficit’, and this is the method Tabata et al chose to use.

How to work out the deficit
At rest, we use a certain amount of oxygen simply to function. If we start to walk around, we use more. Breaking into a jog, we use more still. As exercise intensity increases, so does the use of oxygen, and the relationship between the two has been shown to be linear. At fairly high intensities, fast running, for example, energy will also be produced anaerobically, but the oxygen use will still increase until it reaches its limit at the VO2max. From then on, any further increases in exercise intensity will be fuelled by anaerobic sources. However, it is possible to predict a theoretical amount of oxygen required to work higher than the VO2max by extrapolating from the linear relationship between intensity and oxygen to intensity levels about the VO2max. The difference between the theoretical level and the actual maximum must represent the anaerobic energy demands. This anaerobic demand is expressed as an oxygen equivalent. The difference between actual and theoretical over the period of the exercise is called ‘the accumulated oxygen deficit’. This is the method Tabata and colleagues used to measure the anaerobic demands of exercise. They are among the first researchers to employ this technique, so their findings from this study are very useful and informative.

Tabata and his team used nine undergraduate sportsmen as their subjects. The exercise was performed on a a static bike, which enabled the exercise intensity, in Watts, to be easily controlled. First, they established the subject’s relationship between exercise intensity and oxygen demands between 35% and 87% of the subject’s VO2max. This was done so they could predict the theoretical oxygen demands at intensities above VO2max. Then the subject’s VO2max and anaerobic capacities were measured as reference points. The mean VO2max of the group was 57 ml/kg/min. The anaerobic capacity was obtained from the accumulated oxygen deficit during a high-intensity 2-3 minute exhaustive exercise bout. The accumulated oxygen deficit in one bout is the difference between the predicted oxygen demand in ml of O2 per kg and the actual ml of O2 per kg used. The researchers found that the mean anaerobic capacity of the group was 69 ml/kg.

Now to the intervals
On a different day the subjects performed two different kinds of interval workout. The first session (I1) comprised bouts of 20 seconds with 10 seconds rest at an intensity equivalent to 170% of their VO2max. The subjects performed six or seven bouts each until reaching exhaustion, ie, they could no longer continue at the prescribed intensity. The second session (I2) comprised bouts of 30 seconds with two minutes rest at an intensity of 200% of their VO2max. The subjects managed four or five of these bouts. The oxygen used was measured directly as usual to give the aerobic demands of the interval sessions. The anaerobic demands were calculated as the accumulated oxygen deficit. The accumulated oxygen deficit for bouts with rest intervals is the difference between the theoretical oxygen demand of the bouts and the actual oxygen used during both the bouts and the rest periods.

Tabata et al found that the anaerobic demands of I1 were significantly higher than I2, with the accumulated oxygen deficit being 69 ml/kg compared to 46 ml/kg. This means that on the I1 workout the subjects had reached their anaerobic capacity. In other words, the session was equivalent to a maximal anaerobic effort. On the other session, I2, the anaerobic demand was below the subjects’ capacity.

Tabata et al do not report the overall oxygen consumption for the two interval sessions but they do report that the peak VO2 for I1 is 55 ml/kg/min and for I2 is 47 ml/kg/min. This suggests that the I1 workout places greater aerobic demands on the subjects than I2, with peak VO2 reaching the subjects’ VO2max values.

The conclusion from these findings seems to be that the I1 workout, the 20-second bouts with 10 secs recovery at 170% VO2max, is a better training stimulus for aerobic and anaerobic systems than the I2 workout of 30-second bouts with two mins recovery at 200% VO2max. In support of this, Tabata et al found that a six-week regime of I1 resulted in a 13 per cent improvement in VO2max.

Although I2 does not stress the anaerobic or aerobic systems as much as I1, the actual total amount of anaerobic work done during the I2 workout was greater than that for I1. This is because during I2 the subjects performed 4-5 x 30 sec bouts at 200% of Vo2max, an average of 126 seconds at 200% VO2max. In contrast, on I1 the subjects performed 6-7 x 20 sec bouts at 170% VO2max, an average of 126 seconds at 170% VO2max. Therefore on I2 subjects performed more anaerobic work in total.

The reason subjects didn’t reach their anaerobic capacity on I2, even though they did more work, is due to the differences in the rest periods used. During each bout, phosphocreatine (PCr) is broken down, oxygen stores used up and lactate is produced from anaerobic glycolysis. During a two-minute rest period, as on I2, oxygen stores in the muscles can be replenished and the PCr stores used during each bout will be significantly recovered. Therefore the oxygen store and PCr contribution to each bout in I2 will be high. Because of this, more work can be done until lactate reaches the level whereby the subject cannot continue. In addition, although more TOTAL anaerobic work is done on I2, a two-minute recovery time allows the aerobic system to contribute more. Thus, PROPORTIONATELY less anaerobic work is performed and so the subjects do not reach anaerobic capacity.

In contrast, the rest intervals in I1 are very short. Therefore the PCr and O2 contribution will be insignificant after the first or second bout, as little oxygen and PCr store recovery will occur during 10-second rest intervals. PCr and O2 stores are quickly used up, and so the anaerobic energy must be mainly supplied by anaerobic glycolysis. This results in faster accumulation of lacate and earlier fatigue. Also, with short rest intervals there is proportionately less aerobic contribution and so subjects must reach anaerobic capacity to achieve the workout. Interestingly, even though proportionately less aerobic work is done, the aerobic demand on I1 is higher than on I2.

What it means to you
The conclusion must be that I1, with high-intensity bouts and very short rests, is a very intense workout that maximally stresses both aerobic and anaerobic systems. I2, with longer rest periods, does not stress both the anaerobic and aerobic energy systems as much, and so more work can be done until fatigue.

The results of this research by Tabata et al clearly show that two different intervals workouts have different demands and therefore training effects. I1, with 20-second bouts with 10 secs rest at 170% VO2max places the aerobic and anaerobic systems at peak stress. Therefore it would be a fine session for improving both aerobic and anaerobic capacity. Events where both aerobic and anaerobic demands are high are, for example, 400m, 800m and 1500m running, sprint cycling, canoeing, rowing and speed skating. This kind of workout would be great for these sports. Games players may also want to use the I1 workout as an intense training method for improving aerobic and anaerobic fitness.

The I2 workout doesn’t put either system at peak stress. However, it does allow more high-intensity work to be done in total.With the longer recovery, I2 has a greater contribution from the PCr energy stores. So this kind of session will be better for developing the PCr system, improving maximal power. In addition, by allowing greater rest periods, the session can help improve recovery mechanisms.
Professor Craig Sharp, in a lecture at an International Coaching Conference on anaerobic exercise, recommended longer rests for anaerobic recovery training, as the body can learn to buffer the acidosis and mobilise the anaerobic enzymes during the rest period (‘Some aspects of anaerobic exercise and training’, Sharp, N C C. Transcripts of a lecture from the 18th International Coaches Convention, hosted by the Scottish Amateur Athletic Joint Coaches Committee). This I2 workout will be useful for games players, who need the ability to repeat short maximal efforts, with low-intensity recovery periods, throughout a match. However, I2 will not bring about the same improvements in anaerobic capacity as I1, so games player could complement I2 with I1. By the same token, if only I1 was used, the athlete would not develop the PCr system and recovery mechanisms as much as if I2 were included.

I recommend that for anaerobic training, both types of interval sessions are used, one with very short rests, another with long recoveries. However, the athlete’s sport will determine which type of session is most important. Incidentally, if you want to use interval training, remember that to get the kind of benefits described you must perform the workouts to exhaustion. Interval training is about setting a demanding intensity level and working at that level for the prescribed work/rest ratios until you cannot continue. If you do that, you have reached overload and the training will be effective. Without overload, there is no adaptation.

Click here for more essential advice about this, and find out how some athletes have suddenly improved to world standards.

Raphael Brandon

Hvala za odgovor – upam, da mi uspe čimprej prebrati. Slišala sem, da je efektivnejši od navadnega aerobnega treninga in ker se izvaja cca. pol manj časa, me zadeva zanima…

LP, Staša

Efektivnejši? Odvisno kaj želiš. Vsaka oblika treninga ima svoje dobre strani, zato vsak, ki koliko toliko resno trenira kombinira oba načina treninga, da dobi čimveč. Samo intervalni trening ni najboljša izbira, ker je kot sem že povedal zelo zahteven.

Še enkrat zadnji odstavek zgornjega teksta.

If you want to use interval training, remember that to get the kind of benefits described you must perform the workouts to exhaustion. Interval training is about setting a demanding intensity level and working at that level for the prescribed work/rest ratios until you cannot continue. If you do that, you have reached overload and the training will be effective. Without overload, there is no adaptation.

Tudi jaz komaj cakam, da bom imel cas, da preberm tekst 🙂

HIIT si marsikdo predstavlja kot “razbit” kontinuuiran trening…kar je u bistvu f. bull ****. U bistvu naredi “pocasen” sprint in potem pociva.
Ampak za kurjenje mascob je tuki taksen nacin treniranja dober…boljs po mojem 15 kilavih intervalov kot 20-25 minut kontinuiranega teka.

Jaz zdej ko nimam casa delam samo intervalne treninge…pac 2x na teden in to je vse kar pocnem.

Kolesar, a posljes prosim se enkrat tekst ali link od Allena (al pa je bil en drug triatlonec), kjer je bilo govora o tem, zakaj je treba trenirati z nizjim pulzom.

hvala,
honda

Tudi jaz bom sele prebrala… ceprav sem zadnje case na to temo zasledila veliko pisanja…

Ampak tale mi je pa prva: a potem je brez veze, da si reces, da bos naredil 8 intevalov, ampak trening prilagodis izcrpanosti? Se pravi, ce bom po 8ih intervalih se sposobna, pac naredim se devetega, desetega…?

Ne vem, kako ljudje delajo intevalni trening, ampak jaz pridem cisto prec od njega. Grem pa tako, da vsaj zadnje stiri vsaj dosezem 90% MSU, ce se le da cimprej v intervalu.

Nisem pa se poskusila variirati intenzivnega in recovery dela, ampak ju imam vedno enaka – priblizno 1:50 pri stepperju in 1:00 pri teku (ampak tega zaradi poskodb ze celo vecnost nisem delala).

__ http://www.cenim.se

Kolesar:
Grupa, ki so jo imeli v raziskavi je imela v povprečju VO2max 57/ml/kg/min. Veš mogoče koliko se ta številka razlikuje med netreniranim in treniranim recimo kolesarjem ali tekačem? In kje so povprečni rekreativci?

VO2max torej vedno predstavlja teoretično izračunan maksimum iz linearne krivulje med porabljenim kisikom in intenzivnostjo treninga? Od dejanskega maksimuma pa se razlikuje zaradi anaerobnega “goriva”, sem prav razumela?

170%VO2max… pomeni to, da potegneš premico še naprej do 170% in na grafu odčitaš kakšna intenzivnost je to? V wattih? Srčnem utripu?

Si z laičnim teoretičnim okvirnim izračunom VO2max sploh lahko pomagaš?
Hvala,
LP Barb

Kolesar,

mene je pravzaprav zanimala primerjava med efektivnostjo (porabo maščobe za energijo) pri aerobnem in intervalnem treningu. Sicer pa vidim, da očitno vem premalo o sebi, da bi slednjega lahko izvajala, vsaj sklepajoč iz tvojega prispevka. Najbrž tudi ti meniš, da v prakski intervalni trening za mene (3-4 krat tedensko trening z utežmi, redko (1-2 krat tedensko) aerobni trening) ni primeren?

LP, Staša

Mislim, da je primeren za tiste, ki imajo “nekaj podlage” in vedo kaj hočejo.
Zvečer ti bom poslal in komentiral tisto kaj želiš vedeti. Kako in od kod se porablja energija pri različnih stopnjah intenzivnosti obremenitve.

Za Hondo,

Tu je tisti članek. Kot sem že povedal, moramo vedeti kaj nam je cilj. Če je cilj dolgotrajna vzdržlkivost pri visoki hitrosti, potem je ta način tudi za moje pojme najboljši. Saj v določeni fazi prešalta na intervalni trening in se vrne nazaj.

LP

Barb, tudi tebi bom odgovoril zvečer, ko bom imel malo več časa.
V fitnesu ti večina kardio naprav pokaže fitnes index, ki naj bi bil uporaben približek VO2Max-u.
Boljše Polarjeve ure ti tudi izračunajo predikcijo tvojega VO2Max-a
na osnovi spola, teže, starosti in analize variacij med utripi merjene v popolnem mirovanju.

Hvala kolesar!

Za Stašo,

At a Texas laboratory, five experienced cyclists worked out for at least 30 minutes at three different intensities – 25% V02max, 65% V02max, and 85% V02max. These three intensities correspond with about 40-50 per cent, 76 per cent, and 92 per cent of maximal heart rate, respectively. At each exercise level, scientists carefully studied the cyclists’ rates of fat metabolism.

The trends in fat breakdown were clear. As exercise intensity increased from 25% V02max to 85% V02max, the amount of fat pouring out of the athletes’ fat cells into their bloodstreams steadily declined. As a result, fat originating in fat cells made a huge contribution to the energy required for exercise at 25% V02max, providing about 80 per cent of the needed energy! By contrast, fat coming from fat cells contributed only 30-40 per cent of the total energy at 65% V02max and just 10-15 per cent of the total energy at 85% V02max.

Why did fat cells pay so little regard to the muscles’ need for energy at 85% V02max? Actually, the chubby little cells were quite busy breaking down their internal fat molecules at that intensity; the real problem was in the blood. During high-intensity exercise, blood pours toward the muscles in flood-stage quantities but avoids the fat cells as much as possible. As a result, there’s little blood available to ‘pick up’ fat from the fat cells, and the fat has to wait until after a workout is over to move into the bloodstream.

However, some additional fat is always locked away inside muscle cells. This second supply of fat doesn’t have to move through the blood to get to the muscles, and it can provide a decent share of the fuel required for exercise. When the inside-muscle fat was factored in, fat contributed a steady 90 per cent of the required energy at 25% V02max, versus 50-60 per cent at 65% V02max.

So which intensity is best?
That may make it seem that 25% V02max is by far the best intensity for breaking down fat, but bear in mind that little energy is really needed to exercise at that paltry intensity, so the actual amount of fat burned was roughly 33-per cent greater at 65% V02max than at 25% V02max! At 25% V02max, the cyclists were burning energy at a rate of only about seven calories per minute; at 65%, the rate was roughly 14 calories per minute. Since fat supplied 90 per cent of the calories at the lower intensity, 90% X 7 = 6.3 calories of fat per minute. At 65% V02max, 60% X 14 = 8.4 calories per minute, a 33-per cent upswing in fat combustion.

In fact, total fat degradation was actually as high at 85% V02max as it was at 25% V02max, even though the former intensity is noted for its reliance on carbohydrate and the latter intensity is often referred to as a special ‘fat-burning’ zone of exercise. At 85% V02max, the cyclists used up energy at such a high rate that fat’s contribution, even though it amounted to a small percentage, added up to a sizable number of calories. To put it another way, a small piece of a huge pie (the 85% ‘pie’) can be just as big as a large piece of a small pie (the 25% ‘pie’).

The research suggests that 65% V02max (or around 76 per cent of maximal heart rate) is a wonderful intensity for breaking up fat, leading to 33-per cent greater fat metabolism than higher or lower intensities. Thus it’s a good exercise level for long workouts in which cyclists are attempting to ‘teach’ their muscles to get better at using fat.

What about losing weight?
However, for purposes of weight loss, calorie burning seems to be what really matters. Since an 85%V02max training sessions burns about 50 per cent more calories per minute than an equal-duration, 65%V02max workout, the former is better in a calorie-counting sense. It’s also nice to know that there is a sizable upturn in fat metabolism RIGHT AFTER AN 85% WORKOUT IS OVER. Remember that extra fat lurks inside fat cells during an 85% session. As blood returns to the fat cells when the workout ends, it picks up this fat and takes it to the muscles, where it’s readily gobbled up for energy.

If you’ve got about 30 minutes available for a cycling workout and you want to lose weight and get fitter, you’re better off with the 85% workout, rather than the 65% session. However, the 85% workout is much tougher (it corresponds to a heart rate of 90-95 per cent of maximal), so a more realistic exertion level is at about 75-80% V02max (83-88 per cent of maximal heart rate), an intensity which you’re more likely to maintain for 30 minutes and which also burns plenty of calories and a decent amount of fat. For workouts lasting significantly longer than 30-40 minutes, you’ve really got little choice but to rely on exertions below 85 per cent of maximal heart rate, but bear in mind that it’s worthwhile throwing in two- to five-minute intervals at an increased intensity as often as you can bear it.

‘Regulation of Endogenous Fat and Carbohydrate Metabolism in Relation to Exercise Intensity and Duration,’ American Journal of Physiology, vol. 265, pp. E380-391, 1993
Owen Anderson
————————————————————————————————

Moj komentar, ki na neki način pokriva del odgovora tudi za Barb.
Ko beremo takšne analize moramo dobro razmisliti, kaj to pomeni za mene?
Ali lahko apliciram te in podobne analize v (% VO2MAX ali MSU) direktno na svoj primer?
Kako določiti nivo bremenitve in počitka za svojo stopnjo pripravljenosti?
Zakaj to govorim?

Najprej moramo poznati vsaj nekaj osnovnih pojmov o VO2max, Laktatnem pragu in efikasnosti izrabe energije.
Nekaj o VO2MAX in kako ga izboljšati :

Zdrava, slabo trenirana oseba ima VO2MAX okoli 30 ml/kg/min in lactatni prag okoli 60% VO2MAX kar ustreza 70% MSU ali celo slabše podatke.

Dobro trenirana oseba ima VO2MAX večji od 50 in lactatni prag okoli 80% VO2MAX kar ustreza 85% MSU.

Vrhunski endurance športniki imajo VO2MAX večji od 70 največ izmerjen 98 ml/kg/min in lactatni prag proti 90% VO2MAX ali okoli 92%MSU.

Kaj to pomeni?
Slabo trenirana oseba že pri obremenitvi, ki presega 70%MSU preide v anaerobno področje in koristi večinoma anaerobne vire energije torej OH. Netrenirama oseba ima samo ozek aerobni pas, kjer lahko efikasno izrablja maščobe.

Pri enakem % obremenitve so trenirane osebe še vedno globoko v aerobnem območju in koristijo energijo iz aerobnih virov torej veliki procent iz maščob.

Ko trenirana oseba prebije mejo od okoli 85%MSU preide v anaerobno območje in koristi energijo izključno iz OH(glikogen).
Vrhunsko aerobno trenirana oseba še vedno koristi aerobne vire torej MAŠČOBE.

Kaj to pomeni?
Z športnega vidika to, da na primer dober hribski voznik ali kronometrist lahko DOLGO časa normalno funkcionira pri zelo visoki obremenitvi, ker ima laktatni prag zelo blizu max utripa. Še vedno koristi energijo iz maščob in telo izloča nizki nivo mlečne kisline.

Kaj to pomeni za normalne smrtnike. Če želimo EFIKASNO izrabljati maščobe, moramo dvigniti VO2MAX in laktatni prag. Če želimo porabiti ČIMVEČ energije, moramo povečati porabnike energije, to so mišice. Če uspemo narediti oboje: povečati efikasnost izrabe in porabnike energije smo resnični zmagovalci.

Najlažje je povečati VO2MAX. Viden napredek je že po 8 tednih pametnega treninga. Po enem letu rednega treninga dosežemo platformo, ki jo težko presežemo.

Laktatni prag se dviguje polj počasi. Zavidljivo raven lahko dosežemo po 6 mesečnem treningu. Platformo dosežemo po 2 letih.

Privajanje organizma na efikasno izrabo energije dosegamo še počasneje.
Rezultati so občutni po eni sezoni. Platformo dosežemo po 4 letih rednega treninga.
To je samo del zgodbe. Če bo interes bom ob priložnosti napisal še kaj.

Kako povečati mišice opisujejo drugi na tem forumu.

Hvala za prispevek in komentar.

LP, Staša

Hvala tudi z moje strani. Za odgovore na drugi del mojih vprašanj se še vedno priporočam. Tudi za tiso, da boš napisal še kaj, če bo interes:))))

Eno kratko vprašanje, berem link, ki si ga dal v zadnjem postu: kaj pomeni “athlets 10K or 5K time”?

LP Barb

Čas na 10.000m ali 5.000m. K kot 1000.

Kolesar,
več kot si berem bolj sem zmedena, pa sem mislila, da že kaj vem:))) Bom rabila nekaj dni, da poskušam uskladiti vse do sedaj prebrane informacije:))

Mi lahko prosim pomagaš pri izrazu “pameten trening”?

Reciva, da izvedem Cooperjev test in iz njega izračunam svoj VO2max. Kako si pomagam s to številko pri izdelavi svojega treninga? Upoštevajoč dejstvo, da bi želela koristit svojemu telesu: torej izboljšat fizično vzdržljivost, vsaj vzdrževati mišično maso, ohranjati kostno maso in se ne bi branila tudi izgube kakšnega kg odvečne maščobe. Splošna sedaj veljavna priporočila so, da naj bi za to pretekli čimveč časa na svojem laktatnem pragu in na teden tako porabili približno 2000 kcal. Vsi vemo, da je profesionalen in intenziven šport tudi stres za telo, pa recimo da bi se želela temu izognat. Za to priporočajo le 30min tek na dan na laktatnem pragu (v meji +oz- 5 udarcev glede na korelirajoči srčni utrip).

Potem pa včasih dobim občutek, da je tisti tek pljunek v morje, ki ne pomeni nič in sem spet na začetku kako do napredka brez dolgoročne škode:)))

Iz tvojih člankov (linkov, ki si jih dal na voljo) sem do sedaj izluščila, da če želim svoje telo spremeniti v aerobno, potrebujem dvig VO2max in laktatnega praga. Za dvig laktatnega praga priporočajo trening vsaj 20min 85-90% MSU, za dvig VO2MAX 65-85% MSU vsaj 20min 3-5krat na teden, za krajše treninge do 30min s katerimi bi rad dvignil fitnes in pokuril maščobo pa 83-88% MSU. In na tej točki sem že čisto zmedena in ne vem več kako:)))))

Laičen izračun MSU (220-leta) mi da številko 188. Koliko se lahko zanesem na to številko? Ali pomaga, če grem spat s Polarko in takoj zjutraj odčitam utrip v mirovanju? Mi lahko do realnega MSU pomaga VO2max iz Cooperjevega testa?

Mi lahko kako pomagaš iz te zmede, ker več kot berem bolj sem zmedena:))) Sem bolj vizuelen tip in si bom morala najprej vse narisat pa bo:)
LP Barb

Barb – hvala, da si vsaj vprasanja uredila: moja glava je od tega en sam kaos! Se na danasnjem intervalnem mi ni dalo miru in se mi zdi, da sem zaradi dekoncentracije slabo opravila trening! :))

__ http://www.cenim.se

Odgovoril bom samo na kratko, ker zdaj nimam časa.

MSU najlažje izmerimo tako, da po dobrem ogrevanju postopoma dvigujemo obremenitev. Ko se utrip ne dviguje več kljub povečani obremenitvi smo dosegli svoj MAX utrip.

Povprečje treh zaporednih meritev zjutraj vzamemo za utrip v mirovanju.
Tedaj po Karvonenovi formuli izračunamo % MSU, ki je dober približek ali zamenjava za % VO2MAX-a.

Res si lahko zmedena. MSU, VO2MAX in Laktatni prag niso v direktni korelaciji. Iz VO2MAX se ne, da izračunati MSU.
MSU je “prirojen” in trening nima veliko vpliva na njega. Formule držijo samo na splošno. Jaz imam MSU=191 na kolesu kljub zrelim letom. Meni formula kaže več kot 20 premalo.
Zakaj na kolesu? Zato, ker je mogoče z tekom doseči nekaj utripov več in z plavanjem nekaj utripov manj.

Določena vrsta treninga ima veliki vpliv na VO2MAX in zelo mali vpliv na dvig laktatnega praga in obratno. Podatek, da ima nekdo visoki VO2MAX ne mora pomeniti, da ima tudi zelo visoko laktatni prag.

Ker je intervalni trening takšne sorte, da pomaga pri “dvigovanju” obeh je zato tako popularen. Po drugi strani pa zelo zahteven za njegovo pravilno planiranje in izvajanje. Na žalost arganizem adaptirana samo na delo z pomanjkanjem kisika. In je primeren za discipline, ki so takšnega tipa.

Moje prejšnje odgovore moraš razdeliti v dva dela.

– Začel sem z pisanjem o intervalnem treningu, ki se pogosto omenja in služi “samo za ogrevanje” pred delom z utežmi ?????!!!!!! Iz tega razloga sem probal razjasniti kaj je intervalni trening. Nisem pa zagovornik rednega pogostega intervalnega treninga.

– Drugi del večinoma govori o treningu za endurance discipline.
Za endurance discipline je intervalni trening samo pripomoček, za dvigovanje VO2MAX, laktatnega praga in adaptacijo organizma na mlečno kislino. Večino časa moramo še vedno izvajati aerobni trening na nizkem utripu . Samo takšna kombinacija nam izgradi “aerobno telo”. L.Armstrong izvaja dolge treninge(6-8 ur) z povprečim utripom med 124-128 utripov na minuto obenem je sposoben voziti v klanec ali kronometer več kot uro blizu maximalnega utripa.

Preberi link, ki sem ga poslal Hondi. Če ti povem, da ga je napisal 6 kratni zmagovalec Ironmana ti to pove vse.

Za občutek vam pošiljam Polarjev info file enega povprečnega treninga
z letočnjega dopusta v Istri.

Duration 3:26:45
Sampling Rate 5 s

Energy Expenditure 2856 kcal
Number of Heart Beats 27095 beats
Recovery -56 beats
Minimum Heart Rate 67 bpm
Average Heart Rate 131 bpm
Maximum Heart Rate 165 bpm
Standard Deviation 16,2 bpm

Minimum Speed 8,6 km/h
Average Speed 29,5 km/h
Maximum Speed 70,4 km/h
Distance 100,1 km
Odometer 4831 km

Minimum Cadence 39 rpm
Average Cadence 91 rpm
Maximum Cadence 122 rpm

Minimum Altitude 49 m
Average Altitude 184 m
Maximum Altitude 366 m
Ascent 1125 m

Minimum Power 8 Watts
Average Power 195 Watts
Maximum Power 565 Watts
Pedalling Index Average 22 %
Pedalling Index Maximum 45 %
Left Right Balance Average L49 – 51R Left – Right

New Report

Close